If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-5q-84=0
a = 1; b = -5; c = -84;
Δ = b2-4ac
Δ = -52-4·1·(-84)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-19}{2*1}=\frac{-14}{2} =-7 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+19}{2*1}=\frac{24}{2} =12 $
| 2.4x=-9.6 | | 15.75m+0.05m+9=16.53m+0.13m | | -3+6q=7q-6 | | 6(x+1)=-4x-14 | | 15w=1000 | | 4x+24+3x-4=90 | | m-26=-21 | | c^2-4c-60=0 | | -6x+30=8(x-5) | | 24=15–2x | | 10+2c=-3c | | -x+11=2×+16 | | 5(u+6)=-4u-42 | | 5(u=6)=-4u-42 | | 9x-3x=11+7 | | 6a=25 | | -112=8-8(3x-3) | | -1/3/4x=9 | | 8(v+8)+8v=-16 | | 3(x-1)=-4+46 | | -2n-9=n+9 | | w^2-2√2w+2=0 | | -27=-3y+5(y-7) | | 6t+7=61 | | 4(5-6v)-4v=-7v+20 | | 1.28+c=30.12 | | 3/4y=12/20 | | 10x2-10x+25=0 | | (6x+13)+(4x-3)=180 | | 3x+4+4x+8=2x+5x+10 | | x+20+2x+2x–60+2x–20+x+40x= | | 3n^2-2n+1=-3n^2+9n+1 |